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Abstract

On completing the design of Iultivariable feedback

system it is always desirable to be able to predict that under

certain changes the system will remain stable. In these notes

some methods are described for determining the robustness

properties of a multivariable feedback system under (19

'4i) simultaneous variation of sensor (or actuator) gains;

(ii) simultaneous nonlinear perturbations of loop gains; and

(iii) plant parameter uncertainty.
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1. Introduction

In the inverse Nyquist array methodI for multivariable

feedback design, the designer,having made the inverse of the

open-loop system diagonally dominant,can by examination of the

open-loop inverse Nyquist array (with Gershgorin circles)

determine bounds on feedback gains for stability.The characteristic

locus design method 2 , although a procedure which does not require

the constraint of diagonal dominance, only gives stability with

respect to a single gain common to all the loops. But, since

low interaction and accurate tracking are main objectives of

this procedure the closed-loop transfer function will almost

certainly be diagonally dominant,and in Section 2 it is shown

how by looking at appropriate closed-loop Nyquist arrays bounds

can be obtained on sensor or actuator changes for stability.

This is a technique developed and implemented on the Cambridge

multivariable design package by Dr. J.M. Edmunds?

In Section 3 the robustness of a multivariable

feedback system is considered under simultaneous nonlinear

perturbations of loop gains. A simple interpretation of work

by Mees and Rapp4 provides a bound on the nonlinear perturbations

.5
for stability in terms of principal gains

In Section 4 the problem of stability under plant

parameter uncertainty is discussed. In particular it is shown

how recent developments in the complex variable analysis of

multivariable feedback systems6 can be used to determine stability

with respect to any system parameter.
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2. Closed-loop Nyquist arrays

The Nyquist array of a transfer function G(s) is formed

4 by drawing the Nyquist diagrams of the individual elements of

G(s). If G(s) describes an open-loop system then the array is called

the open-loop Hyquist array; a similar diagram for G(s) is

called the inverse Nyquist array. If G(s) (G(s) 1) is diagonally

dominant then the diagonal elements of the Nyquist (inverse Nyquist)

array, with superposed Gershgorin circlesI , give bounds on the

simultaneous variation of loop gains for stability. This is a

well known result due to Rosenbrock1 and is a highly attractive

consequence of the inverse Nyquist array design method.

The characteristic locus design method is atechnique

which does not require the constraint of diagonal dominance

but as such only gives stability with respect to a single

gain common to all the loops. However, the main objective of this

approach is to obtain a stable closed-loop system with low

interaction and accurate tracking, and so the closed-loop transfer

function R(s) will almost certainly be diagonally dominant. By

forming a Nyquist array for R(s), called the closed-loop Nyquist

array, and drawing Gershgorin circles on the diagonal-element.

diagrams, bounds can be obtained on simultaneous variation of

sensor gains for stability. By looking at a similar closed-loop

transfer function bounds can be determined for actuator variations.

These methods are now described.

2.1 Closed-loop configuration

We will consider the configuration shown in figurel below.

G( "s)r C K(s) Ga(S) Gc(S)t r Gssr (s)

S, Controller Actuators Plant Sensors
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The closed-loop transfer function R(s)j is given by

R(s)=[Im+Gs (s)Gp (s)Ga (s) K(s)] -IG s (s)G p (s)G a (s)K(s)

and if K(s) has been designed succesfully then R(s) will be

diagonally dominant.

2.2 Stability under simultaneous changes in sensor or

controller gains

Consider a situation where feedback is applied around
the closed-loop system via a real diagonal operator F=diag{fi 1;

see figure 2. Then from the diagonal elements of the closed-loop

Nyquist array the Gershgorin circles can be used to give bounds

on the fi for stability1 .

Figure 2

But the configuration of figure 2 is equivalent to figures 3

and 4 :-
A 

d

K IIJ.. s...... (s) G(s G. (s) I+diacf1 digl
r ~m da +di a*

Figure 3

t ~(L ~m~ia~f9 ~G (s

Figure

Consequently the bounds on the f can be translated into bounds

on changes in sensor or controllei Sr stability in the original



Remark 1. Note that the diagonal elements of the closed-loop

Nyquist array (without Gershgorin circles) give exact

information about system stability under changes in a single

sensor assuming all other sensors remain unaltered. To see this,

suppose that we are interested in varying the jth sensor gain,

and let fi=O for all i except i=j. Then we see from figure 3

that we have a single-input single-output problem described by

the j,jth element of R(s). Stability with respect to f. can

therefore be determined exactly using the Nyquist diagram of

the j,jth element of R(s) which is the j,jth element of the closed-

loop Nyquist array.

Remark 2. Note that the Gershgorin circles define bands within

which the characteristic gain loci of R(s) must lie.

2.3 Stability under chanes in actuator or plant aains

For the closed-loop system shown in figure 1 consider

a new input and output between the actuators and plant as shown

below in figure 5.

n(s) G-----G---s) G (s (s)

n p s an

Figure 5

The closed-loop transfer function relating kn(s) and 9n (s) is

given by

Rn (s) =[ m+ Ga (s) K(s) Gs (s)Gp (s)] -Ga (s) K(s)Gs s Gp (s)

and following exactly the same procedure with Rn(s), as with

R(s) in the previous section, bounds can be obtained on changes

"" . . . .. . .. . ...... ,I ... . ... . ... ... Jl" .. . ..I I'III + .... . . -' ". . ' II .. .. . . ,,,+ + ... l
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in actuator or controller gains for stability. These bounds will

in general be more conservative than those obtained for sensor

variations since there is no explicit objective in the design

procedure which aims to make Rn (s) diagonally dominant.

7
2.4 Example - PW FIOO Jet Engine

~K(s) J G(s) Ii

Figure 6

K(s) - controller obtained via characteristic locus design meth

G(s) - aEtuator, plant and sensor dynamics combined

The characteristic gain loci and step responses are

shown in figures 7-11, and the open-loop Nyquist array is shown

in figure 12 from which it can be seen that the open loop system

is not diagonally dominant. The closed-loop Nyquist array is

shown in figure 13. If the three sensors have their gains

multiplied by kl, k2 , and k3 respectively then the Gershgorin

bands indicate that the closed-loop system will be stable if

k1 < -0.48 or O < k I

k2 < -0.43 or O < k2

and 0.33 < k3 < 11.

If k3 < -1.2 then instability will definitely occur.
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The closed-loop Nyquist array for actuator variations

is shown in figure 14. Because the actuator dynamics is included

in G(s) the closed-loop transfer function is Seem an input and

output between actuator and controller and not between plant

and actuator as described in the theory. An extra scaling

pre-compensator (1,0.001,0.01) and an extra scaing post-

compensator (1,1000,100) have been added because of the different

orders of magnitude of input signals. 'Ehis does not affect the

stability since in the closed loop these operations effectively

cancel each other out.

If the three actuators have their gains multiplied

simultaneously by kal, ka2 , and ka3 respectively then the

Gershgorin circles indicate that stability is rintained if

2 > kal > 0.04 ,

ka2 < -1.7 or 0.12 < ka 2

and ka 3 < -0.24 0.02 < ka3

If -0.24 < ka3 < -0.07 then instability will definitely occur.
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3. Stability with nonlinear perturbations

The results in this section are based on work by
4

Mees and Rapp which in turn is founded on the small-gain

theorem and related results 8 . In simple terms te small-gain

theorem says that if the open-loop'gain' is less than unity

then the closed-loop system will be stable. No attempt to be

rigorous is made in the following.

Consider the closed-loop configuration of figure 1

and let us assume that associated with the sensors there are

some nonlinear perturbations as illustrated in figure 15 below.

N( Figure 15

Assume also that the nonlinear perturbation is diagonal

i.e. N(.)=diag(n(.)), and further that the slope of ni(xi)
1i

is bounded below by -ei and above by ei , as illustrated below.

ni~i ,lope c i

Figure 16

slope -c

It is also required that N(O)=O,

Figure 15 can be redrawn to give the figure below

+H

Hs) Figure 17



and applying the small-gain theorem to this we have that

for stability H(s) must be stable,which it is by design,

and the gain round the loop must be less than unity. To

check this we must first give suitable definitions for the gains

of the linear and nonlinear operators.

The gain of the linear part H(s) can be defined as

sup II H (j w)II
W>o

where lIAi = /(max. eigenvalue of AtA)

and so is the maximum principal gain5 of H(s).

The gain of the nonlinear part will be taken as

max { i)

i

Consequently the inverse of the maximum principalgain of H(s)

gives an upper bound to the slopes of the nonlinear

perturbations for stability to be maintained.

By taking a slightly different definition for the

gain of the linear operator I(s) a graphical test, analagous

to the multivariable circle criteria , can be obtained. The

resulting bound on the ci however is more conservative; this

is now explained.

At a particular value of s

H = RAR -  R-matrix of eigenvectors
A-diagonal matrix of

eigenvalues

therefore

=_ II II II -l
hIR 1 1 iAll 11R_ 111

F = y p

where y= 11II s-l R_1 is the w-_ro r-ss- f thG ratio of the

largest to the smallest principal gain of R, and p is the largest

eigenvalue of H. Since yp is an upper bound on hHI , thegain of



H(s) can be taken as

sup y(jW) p(jW)
w>0

Therefore if the eigenvalue-loci of H(jw) multiplied by y(jw)
all lie within a circle centre the origin radiusx-1 then

max

the system remains stable. The radius of the circle which just

touches these loci is therefore a maximum bound on the nonlinear

perturbations.

3.1 Example - PW FlOO Engine
7

(a)

which is equivalent to

K(s) G(S) N .

Note -(
H(s)= [I+G (s) K (s)]-G(s)K(s) (b)

Figure 18

The principal gains of H(s) are shown in figure 19. The

maximum principal gain is 1.22 which gives an upper bound on

the magnitude of the ci of 0.82.

The eigen-loci of H(jw) modified by y(jw) are shown in figure

20, and y(jw) is shown separately on figure 21. From figure

20 we see that the loci are completely enclosed by a circle
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of radius 8 which gives an upper bound of 0.125 on the

magnitude of the e V

4. Stability under plant parameter uncertainty

See enclosed paper entitled "A note on parametric stability".
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